_ _ _ _ _ _

Т. 8, № 1. С. 37—48 Научная статья УДК 159.9	Физические науки	2023
КОНОНОВ Данила Валерьевич	бакалавриат, Петрозаводский государственный универси (Петрозаводск, Российская Федерация) DanilaKononov@outlook.com	тет
КОЧАКОВ Алексей Владимирович	бакалавриат, Петрозаводский государственный универси (Петрозаводск, Российская Федерация) avkochakov@mail.ru	тет

АПРОБАЦИЯ МЕТОДИКИ ОПТИМИЗАЦИИ МОНОХРОМАТОРА НА ОСНОВЕ НОРG

Научный руководитель: Логинов Дмитрий Владимирович Статья поступила: 16.12.2022; Принята к публикации: 28.01.2023; Опубликована: 15.04.2023 Аннотация. В статье представлена информация о корреляции данных нейтронной и рентгеновской мозаичности для кристаллов НОРG. Эти данные позволят повысить эффективность фокусировки нейтронных монохроматоров. В ходе работы было установлено, что методика позволяет оценивать пригодность кристаллов НОРG и то, что необходимы кристаллы высокого качества для лучшей апробации методики.

Ключевые слова: пиролитический графит, нейтронный монохроматор, рентгеновская дифракция, мозаичность, дефекты HOPG

Для цитирования: Кононов Д. В., Кочаков А. В. Апробация методики оптимизации монохроматора на основе HOPG // StudArctic Forum. 2023. Т. 8, № 1. С. 37—48.

Высокоориентированный пиролитический графит (Highly Oriented Pyrolytic Graphite, HOPG) является одним из самых распространённых материалов для построения нейтронных фокусирующих монохроматоров для нейтронографических приборов в силу своих высоких фокусирующих свойств, обусловленных структурой материала. Однако свойства материала очень сильно зависят от степени дефектности его структуры, а также от вида дефектов пирографита.

Целью проделанной работы является проверка методики определения дефектности кристаллов HOPG с целью увеличения эффективности нейтронных монохроматоров. Пиролитический графит - углеродный материал, обладающий гексогональной микродоменной (размером до 10 нм [Фиалков : 9]) структурой с хаотичной ориентацией вдоль одного слоя (оси а) и высокой ориентацией вдоль графитных слоёв (оси с) [Freund]. НОРG получается методом термомеханической обработки [Островский], который заключается в прессовании исходного углеродного материала под высоким давлением при нагреве электрическим током. Причинами дефектов пирографита могут являться: приложение давления при недостаточной температуре заготовки, дефектность исходного материала, недостаточное приложенное электрическое напряжение на заготовку [Шипков], недостаточная температура пиролиза.

Пирографит используется в монохроматорах, т.к. является эффективным оптическим элементом для выделения монохроматического излучения из пучков тепловых и холодных нейтронов, выходящих из среды с низким энергопотреблением через лучевые трубки [Freund].

Можно выделить несколько причин эффективности использовании пирографита в качестве монохроматора:

1. Большая длина когерентного рассеяния и малые поперечные сечения некогерентности.

2. Строгоориентированная слоистая структура, что позволяет хорошо фокусировать пучок нейтронов.

3. Низкая расходимость пучка.

4. Низкий удельный вес и высокая механическая прочность.

Необходимо рассмотреть параметры, влияющие на фокусирующие свойства пиролитического графита:

1. Дефекты образца

Одним из главных дефектов является форма образца пирографита. В частности, образцы пирографита специально изготавливают не в виде бруска, а в виде клина и/или собирающей линзы (рис. 1), чтобы было возможно фокусировать пучок нейтронного излучения в необходимом направлении.

Пучок излучения отражается как от поверхности образца, так и от его обратной стороны. Если угол отражения от внутренней части образца отличается от угла отражения на его поверхности, то будет наблюдаться эффект расфокусировки пучка с увеличением уширения отражающих пиков, который называется «аберация глубины». [Freund : 3]

Рис. 1 Монохроматизация нейтронов изогнутым образцом HOPG, схематически показывающая, как специфические деформации решетки влияют на свойства отраженного луча [Freund]

2. Толщина образца

Образец с оптимальным значением толщины позволяет создать монохроматор, способный пропускать нейтроны с минимальным фоном, поскольку рассеяние в результате множественных, диффузных и паразитных процессов сводится к минимуму. Рост толщины кристалла относительно оптимального значения приводит к увеличению фонового загрязнения от отражённого луча. [Freund]

Для определения толщины образца достаточно провести линейные измерения его размеров, тогда как для того, чтобы понять степень его дефектности, необходимо провести измерения мозаичности образца и рассчитать степень отклонения отражающих плоскостей образца от нормали. Это можно сделать с помощью методов рентгеновской дифракции.

Мозаичность - мера разброса ориентаций кристаллографических областей. Предлагаемая методика измерения [Freund] заключается в следующем:

Измерения производятся по 9 точкам образца пирографита размером 5х2 см² узким пучком излучения 2х1 мм вдоль длины и вдоль ширины образца, с обеих сторон. Суммарно будет получена серия из 36 измерений диапазона измерения дифракционного максимума графита (002). По результатам измерений можно рассчитать следующие параметры:

1. Рентгеновская мозаичность образца – позволяет понять степень фокусировки пучка и отражающую способность. Чем она меньше – тем лучше будет сфокусирован пучок.

2. Радиус кривизны – позволяет понять «рельеф» отражающих плоскостей образца, чтобы установить образец в ту ячейку монохроматора, где он будет правильно фокусировать пучок излучения.

Рис. 3. Схема измерения образца пирографита [Freund]

Эксперимент, описанный в данной работе, состоит из двух этапов:

1. Отбор кристалла с наилучшими параметрами мозаичности и подробное его исследование.

2. Исследование образцов, измеренных на нейтронном излучении, с сопоставлением результатов.

В рамках первого этапа проводится съёмка, по методу Брэгга-Брентано, на дифрактометре Rigaku SmartLAB 26-ти образцов пиролитического графита, снятых с фильтров излучателей.

Образцы представляют собой кристаллы пиролитического графита размерами (длина×ширина×высота), в среднем: 4x2x0.3 см. Значение толщины колеблется от 2.5 до 3.5 мм. Поверхность большинства образцов испещрена трещинами (особенно глубоки продольные трещины), вмятинами и царапинами (на рабочей поверхности) от предыдущего использования в качестве фильтра излучения.

Кристаллы исследуются по 3-м точкам «блестящей» поверхности образца.

«Блестящая» поверхность пирографита отличается характерным металлическим блеском и переливом. Если определить «блестящую» сторону образца затруднительно, то проводится предварительная съёмка образца с двух сторон для определения его «блестящей» поверхности. «Блестящая» сторона отличается наибольшим значением интенсивности отражения рентгеновского пучка.

Далее полученные дифрактограммы по трём точкам загружаются в программу PDX-L для расчёта положения графитового пика, его интенсивности и полной ширины на половине высоты (ПШПВ).

Исходя из полученных результатов, можно предварительно судить о мозаичности кристалла исходя из значения ПШПВ, т.к. оно показывает то, насколько сильно (широко) кристалл рассеивает рентгеновское излучение, и, чем значение ПШПВ меньше, тем более сфокусировано отражается от кристалла пирографита пучок рентгеновского излучения, что говорит о лучшей мозаичности образца.

Методика измерений при отборе кристалла – Брэгг-Брентано [Трушин]. Условия съёмки на данном этапе эксперимента следующие:

- Тип рентгеновской трубки: кобальтовая ($\lambda = 1.78892$ Å)
- Ширина щели излучателя: 2 мм
- Ширина щели приёмника: 20 мм
- Площадь облучения: 2х2 мм2
- Интервал съёмки (20): 30.5 31.5 градус
- Шаг съёмки (20): 0.01 градус
- Время съёмки на шаг: 1 секунда

Результаты первого этапа работы:

Таблица 1

Результаты обработки данных дифрактограмм, полученных при съёмке 26-ти образцов пиротического графита

N.I					()0 ()
Nº	d(002), A	FVVHM(Θ)°	Int I(ω), cps°	ω° 1 point	η(ω)° 1 point
1	3.36137	0.0595	435460	15.208	1.247
2	3.36097	0.0983	9046821	15.695	4.121
3	3.35628	0.0671	202031	15.205	1.727
4	3.35849	0.0546	6219433	14.989	1.124
5	3.35584	0.0536	5464979	15.292	1.22
6	3.36204	0.1037	6545851	15.427	3.45
7	3.36326	0.0958	7884357	13.344	4.349
8	3.35746	0.05309	5747836	15.3341	0.8532
9	3.36048	0.0991	8718188	15.847	2.083
10	3.35567	0.0534	6264710	15.46	1.222
11	3.35776	0.0552	7298974	15.3352	0.9647
12	3.36641	0.098	7777591	16.495	1.2306
13	3.35786	0.0568	7272359	14.847	1.16
14	3.35552	0.0557	6073994	15.525	1.084
15	3.35724	0.0968	8431092	15.642	2.108
16	3.3596	0.085	9126528	15.393	2.2149
17	3.3562	0.0513	6099437	15.659	1.1921
18	3.35837	0.0804	7096451	15.4632	1.1431
19	3.36112	0.0909	7536195	15.7636	1.4704
20	3.35883	0.0869	7728457	15.4577	1.5911
21	3.3663	0.0766	7475308	16.235	1.321
22	3.3558	0.0527	6176080	15.758	1.02
23	3.36041	0.1002	7471341	14.711	2.488
24	3.35832	0.0772	6843007	15.4666	0.9617
25	3.35818	0.0787	7516608	15.3742	1.1607
26	3.36869	0.0963	9270366	14.539	2.118

Результаты измерений 9 кристаллов показали, что кристаллы обладают завышенными значениями мозаичности на рентгеновском излучении, было принято решение о том, что в дальнейшем (в частности, ради экономии времени) будет исследоваться только центральная точка кристаллов пирографита.

В ходе исследования проводится измерение образца, обладающего наилучшей мозаичностью, в данном случае, это кристалл №8, по 9 точкам согласно схеме, представленной на рисунке №9 и в статье [Freund, 6].

В рамках второго этапа был избран метод фокусировки пучка – Parallel beam, который позволяет минимизировать расхождение пучка, а, следовательно, уменьшает приборную погрешность, что позволяет получить более точную картину мозаичности кристалла.

Суть данного метода заключается в том, что пучок попадает на образец не напрямую, а отразившись от зеркала; следовательно, он становится параллельным, и расхождение пучка минимизируется, что, в свою очередь, увеличивает точность измерения, но неизбежны потери части интенсивности.

Расходимость пучка после зеркала определяется солером (solar) (коллиматором) на излучателе и коллиматором на приёмнике (In-plane и Solar). Значение расходимости пучка, указанное на коллиматоре приёмника = 0.228 градусов. Ширина пучка на входе - 2 мм.

Рис. 4. Схема измерения Parallel beam [ywcmatsci.yale.edu]

Таблица 2

Результаты обработки данных дифрактограммы, полученной с кристалла №8 по результатам съёмки.

		1					
Nº point	Int I(ω), cps°	ω°	η(ω)°	<ω>°	η(ω)°	R12, m	<r>, m</r>
8 кристалл	вдоль длинно	го направле	ния				
1	8819	15.4994	0.8789	<ω147>°	<η147>(ω)°	5.0	<r147>, m</r147>
2	10325	15.2136	0.8672	15.4286	0.7520	954.9	480.0
3	12794	15.5913	1.1107				
4	3512	15.7490	0.6678	<ω258>°	<η258>(ω)°	-13.7	<r258>, m</r258>
5	5726	15.5981	0.7052	15.2846	0.7506	-6.9	-10.3
6	9526	15.3265	0.8139				
7	2804	15.0374	0.7092	<w369>°</w369>	<η369>(ω)°	-36.2	<r369>, m</r369>
8	3016	15.0420	0.6794	15.3426	1.0082	-3.8	-20.0
9	1400	15.1100	1.1000	Среднее:	0.8369		
8 кристалл	вдоль коротко	ого направле	ения				
1	3100	15.7365	0.9031	<ω147>°	<η147>(ω)°	2.2	<r123>, m</r123>
2	3729	15.9200	0.9950	15.8018	0.7935	2.5	2.4
3	4470	15.6770	0.9170				
4	1742	15.8420	0.7647	<ω258>°	<η258>(ω)°	3.1	<r456>, m</r456>
5	2246	15.5637	0.8104	15.7416	0.9660	-9.9	-3.4
6	3177	15.1350	0.9550				
7	1183	15.8270	0.7128	<ω369>°	<η369>(ω)°	2.2	<r789>, m</r789>
8	1651	15.7411	1.0928	15.3943	0.9392	5.7	4.0
9	2016	15.3710	0.9455	Среднее:	0.8996		

Обозначения: № – номер точки измерения по методике, Int I(ω) – интегральная интенсивность дифракционного пика, ω – положение дифракционного пика в обратном пространстве, $\eta(\omega)$ – ПШПВ (мозаичность) по обратному углу, – среднее значения положения пиков для линий точек измерения, (ω) – среднее значение ПШПВ для линий точек измерения, R12 – значения радиуса кривизны отражающей поверхности для пар точек, – радиус кривизны отражающей поверхности для пар точек, – радиус кривизны отражающей поверхности для линии точек.

Рис. 5. Главный дифракционный максимум образца НОРС №8, измеренные вдоль (слева) и поперёк (справа) длины образца

Результаты второго этапа работы:

На данном этапе были исследованы образцы, предварительно измеренные на нейтронном излучении с длиной волны 2.4 Å. Они представляют собой кристаллы пиролитического графита размерами (длина×ширина×высота), в среднем: 5х2х0.2 см. Поверхность блестящая, также на ней имеется небольшое количество трещин, царапин и сколов. Методика исследования не менялась.

Таблица 3:

	•			-	-	· •	-	
Nº point	Int I(ω), cps°	ω°	η(ω)°	offset ω°	<ω>°	η(ω)°	R12, m	<r>, m</r>
3 кристалл	вдоль длинног	о направл	ения					
1	582271	15.2784	1.0514	13.4746	<ω147>°	<η147>(ω)°	-3.6	<r147>, m</r147>
2	486012	15.2381	1.0012	13.4669	15.1630	0.8706	-1.7	-2.7
3	478943	15.1283	0.8601	13.4674				
4	811933	15.2166	0.8976	13.4957	<ω258>°	<η258>(ω)°	-3.5	<r258>, m</r258>
5	752559	15.2309	0.8255	13.4905	15.1320	0.8223667	-2.1	-2.8
6	705621	15.1735	0.7466	13.4925				
7	807749	14.9939	0.6628	13.5003	<ω369>°	<η369>(ω)°	-2.6	<r369>, m</r369>
8	838863	14.9269	0.6404	13.4970	15.027867	0.7538333	-1.7	-2.1
9	819701	14.7818	0.6548	13.4935	Средне	e η(ω)°±δη:	0.8156	±0.0412
3 кристалл	вдоль коротко	го направ	ления					
1	610842	15.6346	1.0746	13.4790	<ω147>°	<η147>(ω)°	6.4	<r123>, m</r123>
2	480480	15.5839	0.9334	13.4711	15.3616	0.8882	2.3	4.3
3	523484	16.1215	1.2000	13.4799				
4	807846	15.3610	0.9338	13.4947	<ω258>°	<η258>(ω)°	-13.5	<r456>, m</r456>
5	711211	15.4977	0.8072	13.4915	15.3896	0.8070	-14.8	-14.2
6	617542	15.3750	0.7960	13.4970				
7	738073	15.0891	0.6561	13.4838	<ω369>°	<η369>(ω)°	-2.1	<r789>, m</r789>
8	926310	15.0871	0.6804	13.4967	15.5424	0.9293	-2.2	-2.2
9	963121	15.1307	0.7920	13.4942	Средне	ee η(ω)°±δη:	0.8748	±0.0452

Результаты обработки дифрактограмм кристалла №3, первая сторона.

Рис. 6. Главный дифракционный максимум образца НОРG №3, первая сторона, измеренный вдоль (слева) и поперёк (справа) длины образца.

	Ī	аблица	4:
--	---	--------	----

Результаты	обработки	лифрактог	памм кристалла	No3.	вторяя стороня.
I CSYJIDI AI DI	υυμαυυτκή	дифрактог	рами кристалла	ິງາ≚ວຸ	вторал сторона.

、	, s , t = 1 = 1 = 1 = 0	p n 0011			-p		an eropon	
Nº point	Int I(ω), cps°	ω°	η(ω)°	offset ω°	<ω>°	η(ω)°	R12, m	<r>, m</r>
3 кристалл	вдоль длинног	о направл	ения					
1	562423	15.69	1.2418	13.4700	<ω147>°	<η147>(ω)°	21.6	<r147>, m</r147>
2	675818	15.7832	1.366	13.4763	15.5134	1.1593	-6.9	7.4
3	884886	15.9098	1.4181	13.4882				
4	634762	15.3352	1.0404	13.4755	<ω258>°	<η258>(ω)°	8.0	<r258>, m</r258>
5	583136	15.3806	1.1354	13.4717	15.5276	1.2348	-10.1	-1.1
6	-	15.378	1.1556	13.4745				
7	1023114	15.515	1.1958	13.4964	<ω369>°	<η369>(ω)°	5.3	<r369>, m</r369>
8	1037667	15.419	1.203	13.4986	15.560267	1.2447667	-8.3	-1.5
9	1095272	15.393	1.1606	13.5034	Средне	ee η(ω)°±δη:	1.2130	±0.0357
3 кристалл вдоль короткого направления								
1	558928	16.1963	1.372	13.4793	<ω147>°	<η147>(ω)°	2.0	<r123>, m</r123>
2	642489	15.6272	1.3671	13.4756	15.7548	1.1864	7.1	4.5
3	-	15.576	1.439	13.4842				
4	-	15.601	1.246	13.4588	<ω258>°	<η258>(ω)°	8.9	<r456>, m</r456>
5	640656	15.5259	1.1402	13.4753	15.5279	1.1359	9.9	9.4
6	679289	15.5996	1.1766	13.4765				
7	885727	15.4671	0.9411	13.4913	<ω369>°	<η369>(ω)°	-18.3	<r789>, m</r789>
8	1045541	15.4307	0.9004	13.5004	15.4910	1.1818	-6.3	-12.3
9	1137526	15.2975	0.9298	13.5017	Средне	ee η(ω)°±δη:	1.1680	±0.0214

Рис. 7 Главный дифракционный максимум образца НОРG №3, вторая сторона, измеренный вдоль (слева) и поперёк (справа) длины образца.

Рис. 8 Модель отклонения отражающих плоскостей от поверхности образца №3, первой (слева) и второй (справа) сторон, построенная в ПО Origin

Таблица 5:

Nº point	Int I(ω), cps°	ω°	η(ω)°	offset ω°	<ω>°	η(ω)°	R12, m	<r>, m</r>
8 кристалл вдоль длинного направления								
1	850907	15.4182	0.7083	13.4957	<ω147>°	<η147>(ω)°	-21.1	<r147>, m</r147>
2	738116	15.34	0.7529	13.4908	15.3654	0.8337	-15.7	-18.4
3	692056	15.13	0.883	13.4830				
4	677371	15.4751	0.798	13.4792	<ω258>°	<η258>(ω)°	-14.0	<r258>, m</r258>
5	607714	15.5036	0.9093	13.4753	15.3451	0.9374	-6.7	-10.3
6	626574	15.5521	1.0178	13.4754				
7	759186	15.203	0.9949	13.4802	<ω369>°	<η369>(ω)°	-6.2	<r369>, m</r369>
8	776186	15.1916	1.15	13.4780	15.350033	1.0578333	-60.1	-33.2
9	703159	15.368	1.2727	13.4733	Средне	ee η(ω)°±δη:	0.9430	±0.0765
8 кристалл вдоль короткого направления								
1	829709	16.009	0.716	13.5050	<ω147>°	<η147>(ω)°	2.8	<r123>, m</r123>
2	711823	15.6146	0.6906	13.4959	15.6273	0.7969	6.3	4.5
3	697715	15.6516	0.6912	13.4965				
4	557033	15.4623	0.7712	13.4755	<ω258>°	<η258>(ω)°	33.3	<r456>, m</r456>
5	577907	15.5416	0.8869	13.4768	15.5554	0.8735	18.2	25.7
6	592065	15.5048	1.023	13.4750				
7	722528	15.4107	0.9034	13.4849	<ω369>°	<η369>(ω)°	-39.9	<r789>, m</r789>
8	705061	15.5101	1.0429	13.4790	15.4303	0.9796	-5.6	-22.7
9	653464	15.1344	1.2246	13.4722	Средне	ee η(ω)°±δη:	0.8833	±0.0641

Рис. 9 Главный дифракционный максимум образца НОРG №8, первая сторона, измеренный вдоль (слева) и поперёк (справа) длины образца.

Таблица б

Nº poi	int	Int I(ω), cps°	ω°	η(ω)°	offset ω°	<ω>°	η(ω)°	R12, m	<r>, m</r>
8 крис	сталл	вдоль длинног	о направл	ения					
	1	621151	15.4483	0.7614	13.4809	<ω147>°	<η147>(ω)°	-11.9	<r147>, m</r147>
	2	416233	15.2165	0.8223	13.4601	15.3167	0.7711	-4.2	-8.0
	3	411355	15.3433	0.8777	13.4602				
	4	705541	15.3828	0.684	13.4943	<ω258>°	<η258>(ω)°	-5.9	<r258>, m</r258>
	5	709576	15.4419	0.7757	13.4901	15.2729	0.7607667	-4.5	-5.2
	6	708363	15.4782	0.919	13.4896				
	7	712740	15.119	0.868	13.4986	<ω369>°	<η369>(ω)°	-13.4	<r369>, m</r369>
	8	697414	15.1603	0.6843	13.4947	15.3373	0.81	-5.5	-9.4
	9	680525	15.1904	0.6333	13.4916	Средне	ee η(ω)°±δη:	0.7806	±0.0196
8 крис	сталл	вдоль коротко	го направ	ления					
	1	543878	16.0348	0.7291	13.4807	<ω147>°	<η147>(ω)°	1.8	<r123>, m</r123>
	2	444995	15.8499	0.8394	13.4705	15.6379	0.7100	1.8	1.8
	3	414399	16.0674	0.9127	13.4674				
	4	744269	15.5895	0.7202	13.4957	<ω258>°	<η258>(ω)°	5.6	<r456>, m</r456>
	5	722733	15.7076	0.7872	13.4926	15.6927	0.7587	3.4	4.5
	6	694002	15.7848	0.9706	13.4893				
	7	695645	15.2895	0.6808	13.4890	<ω369>°	<η369>(ω)°	-9.9	<r789>, m</r789>
	8	753418	15.5206	0.6496	13.4951	15.7753	0.8541	419.2	204.7
	9	741403	15.4737	0.679	13.4951	Средне	ee η(ω)°±δη:	0.7743	±0.0532

Результаты обработки дифрактограмм кристалла №8, вторая сторона.

Рис.10. Главный дифракционный максимум образца НОРС №8, вторая сторона, измеренный вдоль длины образца

Рис. 11. Модель отклонения отражающих плоскостей от поверхности образца №8, первой (слева) и второй (справа) сторон, построенная в ПО Origin

Таблица 7

Резу.	Результаты обработки дифрактограмм кристалла №13, первая сторона.								
Nº point	Int I(ω), cps°	ω°	η(ω)°	offset ω°	<ω>°	η(ω)°	R12, m	<r>, m</r>	
13 кристалл	вдоль длинно	го направ	вления						
1	813940	15.5526	0.8429	13.5029	<ω147>°	<η147>(ω)°	26.0	<r147>, m</r147>	
2	985182	15.636	0.999	13.5061	15.4641	0.8894	-119.4	-46.7	
3	871150	15.6052	0.8981	13.5041					
4	657164	15.51	0.8206	13.4937	<ω258>°	<η258>(ω)°	20.1	<r258>, m</r258>	
5	714765	15.4719	0.7367	13.5164	15.5125	0.8851	-16.1	2.0	
6	682935	15.3932	0.7882	13.4958					
7	561427	15.3297	1.0048	13.4841	<ω369>°	<η369>(ω)°	-1145.9	<r369>, m</r369>	
8	563033	15.4296	0.9196	13.4921	15.484133	0.8409667	-12.9	-579.4	
9	543900	15.454	0.8366	13.4847	Средне	ee η(ω)°±δη:	0.8718	±0.0206	
13 кристалл	вдоль коротк	ого напра	вления						
1	766371	15.643	0.8325	13.5014	<ω147>°	<η147>(ω)°	6.7	<r123>, m</r123>	
2	998810	15.618	0.921	13.5041	15.4948	0.8620	20.5	13.6	
3	762341	15.4667	0.9261	13.4968					
4	632935	15.4614	0.8235	13.4919	<ω258>°	<η258>(ω)°	-9.7	<r456>, m</r456>	
5	718906	15.367	0.8277	13.5137	15.4706	0.8765	-13.7	-11.7	
6	628666	15.5135	0.7795	13.4927					
7	588725	15.3799	0.93	13.4863	<ω369>°	<η369>(ω)°	-10.2	<r789>, m</r789>	
8	634485	15.4268	0.8807	13.4886	15.4254	0.8456	-6.8	-8.5	
9	626746	15 2961	0.8312	13 4871	Средне	$ren(\omega)^{\circ} + \delta n$	0 8614	+0.0105	

Рис. 12. Главный дифракционный максимум образца НОРG №13, первая сторона, измеренные вдоль длины образца

Таблица 8

Результаты обработки дифрактограмм кристалла №13, вторая сторона.

	-			-	· · · ·	· · · · · ·		
Nº point	Int I(ω), cps°	ω°	η(ω)°	offset ω°	<ω>°	η(ω)°	R12, m	<r>, m</r>
13 кристалл	вдоль длинно	го направ	ления					
1	568085	15.2667	0.6254	13.5029	<ω147>°	<η147>(ω)°	-65.6	<r147>, m</r147>
2	715570	15.402	0.633	13.5087	15.3140	0.6092	-13.2	-39.4
3	728034	15.2831	0.6264	13.4996				
4	528531	15.7044	0.5783	13.4944	<ω258>°	<η258>(ω)°	71.0	<r258>, m</r258>
5	614173	15.6553	0.5996	13.5244	15.3460	0.6106333	-5.1	33.0
6	755686	15.4602	0.627	13.5014				
7	419938	14.971	0.6238	13.4660	<ω369>°	<η369>(ω)°	-6.7	<r369>, m</r369>
8	329315	14.9807	0.5993	13.4502	15.2913	0.6305	-4.5	-5.6
9	434006	15.1306	0.6381	13.4713	Средне	ee η(ω)°±δη:	0.6168	±0.0092
13 кристалл вдоль короткого направления								
1	553896	15.1661	0.6124	13.4842	<ω147>°	<η147>(ω)°	-3.0	<r123>, m</r123>
2	579601	15.244	0.724	13.5010	15.1622	0.6255	-2.9	-3.0
3	755718	15.1656	0.6482	13.4960				
4	435093	15.1356	0.6052	13.4755	<ω258>°	<η258>(ω)°	-2.1	<r456>, m</r456>
5	614013	15.0365	0.596	13.5100	15.1198	0.6413	-1.8	-2.0
6	582132	15.016	0.687	13.4805				
7	545137	15.1848	0.659	13.4821	<ω369>°	<η369>(ω)°	-2.5	<r789>, m</r789>
8	382166	15.0788	0.6038	13.4626	15.0025	0.6689	-1.7	-2.1
9	456581	14.826	0.6716	13.4741	Средне	ee η(ω)°±δη:	0.6452	±0.01579

Рис. 13. Главный дифракционный максимум образца НОРG №13, вторая сторона, измеренные вдоль длины образца

Рис. 14. Модель отклонения отражающих плоскостей от поверхности образца №13, вторая сторона, построенная в ПО Origin

В ходе первого этапа была изучена методика проведения оценки мозаичности HOPG и пригодности их использования, в качестве компонента фокусирующего монохроматора, и на основе этой методики было проведено исследование образцов пиролитического графита. В качестве результата можно отметить следующее: образцы обладают неудовлетворительными показателями мозаичности структуры. Возможными причинами этого являются:

1. Дефекты поверхности образцов, что приводит к уменьшению интенсивности.

2. Неровный рельеф поверхности образцов, что приводит к расфокусировке пучка излучения.

Из всех образцов был выбран лучший, по характеристике рентгеновской мозаичности и исследован более подробно. Из результатов видно, что образец №8 обладает рентгеновской мозаичностью в 2.4 раза хуже, чем мозаичность образцов, предполагаемых для использования в фокусирующих монохроматорах.

Среднее значение рентгеновской мозаичности образца №8: $\eta(\omega) = 0.90^{\circ}$

Среднее значение рентгеновской мозаичности эталона [Freund]: $\eta(\omega) = 0.37^{\circ}$

Второй этап: Были изучены кристаллы лучшего качества, и для проверки методики, результаты измерений на дифрактометре были сравнены с результатами измерений на нейтронах:

Таблица 9

Сравнение значений мозаичности при облучении нейтронным излучением и при облучении рентгеновским излучением

Сторона	η(ω)° netr	η(ω)° x-ray
1	0,53	0,85
2	0,6	1,19
1	0,53	0,91
2	0,55	0,78
1	0,58	0,87
2	0,6	0,63
	Сторона 1 2 1 2 1 2 1 2	Сторонаη(ω)° netr10,5320,610,5320,5510,5820,6

Сравнение показывает, что рентгеновская мозаичность больше нейтронной – это не соответствует выбранной методике. Вероятно, это связано с дефектами поверхности образцов.

Резюмируя, можно сказать, что для корректной работы методики исследования мозаичности HOPG необходимо использовать кристаллы с минимальными поверхностными дефектами.

СПИСОК ЛИТЕРАТУРЫ

Искусственный графит / Островский В. С., Виргильев Ю. С., Костиков В. И., Шипков Н. Н. Москва : Металлургия, 1986. 272 с.

Рекристаллизованный графит / Шипков Н. Н., Костиков В. И., Демин А. В., Непрошин Е. М. Москва : Металлургия, 1979. 184 с.

Пирографит. Получение, структура, свойства. / Фиалков А. С., Бавер А. И., Сидоров Н. М., Чайкун М. И., Рабинович С. М., Усп. хим., 34:1 (1965), 132–153; Russian Chem. Reviews, 34:1 (1965), 46–58.

Рентгеновский фазовый анализ поликристаллических материалов / Трушин В. Н., Андреев П. В., Фаддеев М. А. Электронное учебно-методическое пособие. Нижний Новгород: Нижегородский госуниверситет, 2012. 89 с.

Optimization of highly oriented pyrolytic graphite applied to neutron crystal optics / Freund, A. K., Qu, H., Liu, X., Crosby, M. & Chen, C. (2022). J. Appl. Cryst. 55, 247–257.

XRD Principle : [site] / The Yale West Campus Materials Characterization Core. [New Haven]. URL: https://ywcmatsci.yale.edu/principle-0 (usage date: 10.12.2022).

Original article

Danila V. KONONOV	bachelor's degree, Petrozavodsk State University (Petrozavodsk, Russian Federation) DanilaKononov@outlook.com
Alexey V. KOCHAKOV	bachelor's degree, Petrozavodsk State University (Petrozavodsk, Russian Federation) avkochakov@mail.ru

APPROBATION OF A METHOD FOR OPTIMIZING A MONOCHROMATOR BASED ON HOPG

Scientific adviser: Dmitry V. Loginov Paper submitted on: 12/16/2022; Accepted on: 01/28/2023; Published on: 15/04/2023. **Abstract.** The article presents information on the correlation of neutron and Xray mosaicity data for HOPG crystals. These data will improve the focusing efficiency of neutron monochromators. In the course of the work, it was found that the technique makes it possible to evaluate the suitability of HOPG crystals and that high-quality crystals are needed for the best approbation of the technique. **Keywords:** pyrolytic graphite, neutron monochromator, X-ray diffraction, mosaicity, HOPG defects

For citation Kononov D. V., Kochakov A. V. Approbation of a method for optimizing a monochromator based on HOPG. *StudArctic Forum*. 2023; 8(1): 37–48.